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LIST OF SYMBOLS

Nonalphabetic Characters

(apostrophe or prime) .... Designates the image plane, its absence the
object (background) plane, Fig. 1; used with
both coordinates and physical quantities,
e.g., [(x',y'),(x,y)] and [u',ux].

a (identity) ............... Signifies a definition.
(semicolon) .............. Separates variables from parameters in an ar-

gumnt list - (variables;parameters).
,(arrow) .................. Marks chief space- and tma-domain equations.
• (midline dot) ............ Placed betwen factors of a product to facil-

itate recognition.

* (copyright sign) ......... Signifies convolution of two functions with
respect to one variable, i.e., g(x)ew(xo-x)
a i..: g(x).w(xe-x)-dx - z(xO); repetition
indicates nultiple convolution.

- (degree) ............... Marks the variable or parameter of a convolu-
tion integral; my be affixed to either.

(grave accent) ........... Denotes sampling by a comb function.
\ \ (backslashes) .......... Signify cropping of an image in space and

truncation of an image sequence in time.
< > (angular brackets) ..... Indicate linear, shift-invariant, temporal

averaging of sensor output during temporal-
integral sampling.

* (double arrow) ........... Identifies a fourier transform pair.
(circumflex or hat) ...... Marks vectors.
(tilde) .................. Affixed to one .a.~r of a fourier pair to

indicate distortion ("rippling") due to trun-
cation of the other uemer.

Subscripts

a .................... An atmspheric quantity.
b .......................... A background (object) quantity.
c .......................... Labels central coordinates of detector ele-

ments and integration intervals.
f"...................... Filtered", i.e., passed through one or more

stages of linear, shift-invariant, analog
processing.

g .......................... A gaussian (ideal geometric-optical) quan-
tity.

iv



X .......................... A spectral quantity, one resulting from radi-
ation in the infinitesimal wavelength range X
to (X+dX); also a monochromatic quantity, the
value of a wavelength-dependent quantity at
wavelength X.

Latin Letters

a .......................... Detector width (x dimension), Figs. 2 and 3.
A .......................... Area of optical aperture stop, Fig. 1.
b .......................... Detector height (y dimension), Figs. 2 and 3.
d .......................... Distance from optical aperture to object,

Fig. 1; also indicates an infinitesimal quan-
tity, e.g., dX.

D .......................... Diameter of a circular aperture stop.
f .......................... Temporal frequency.
S.................... Temporal frequency interval (af - 1/at).

6? ......................... Temporal frequency interval (a? - 1/4T).
FL ......................... Equivalent focal length of optics, Fig. 1;

FL - -(xO/xb)d -

4ff ....................... Equivalent "F" number of optics with a circu-
lar aperture stop; 4 ff - FL/D.

3r[ 1, 2F[ 1, lF[ I ........ Three-, two-, and one-dimensional fourier
transformation, Eq. (30) et seq..

-3pi ],-2p[ ],-lrl ] ....... Inverse three-, two-, and one-dimensional
fourier transformation, Eq. (31) et seq..

g .G.................... An arbitrary space-time function and its fou-
rier transform (spectrum).

h(t) * H(f) ................ Overall impulse response and transfer func-
tion for all stages of linear, shift-invar-
iant, analog processing of detector output
including, if applicable, temporal averaging
during temporal-integral sampling.

i .......................... Imaginary unit, 12 = -1.

kxky .................... Iagnitudes of caorients of spatial frequency
vectors k - kx + ky.

akx Ak y ................. Intervals of kx and ky.
1,m,n ...................... Integers labeling spatial (1,m) and temporal

(n) sample sites; also suimation indices of
sampling functions, Eqs. (23a,b). Spatial
coordinates of sample sites are (lAx,may),
Fig. 3.

L,M........................ Number of rows (M) and columns (L) of samples

V



in cropped images. (L-l),(M-l) are zuaxinum
values of summation indices (1,m) in func-
tions representing samnpled and cropped im-
ages. Fig. 4, Eqs. (28a,b) and (29a,b).

... NX.................Background near-normal spectral radiance,
Fig. 1, and its fourier transform.

p\PX ................... px\ is the monochromatic point-spread func-
tion. P, is the monochromatic optical tranis-
fer function. Both are for a geoiuatric-opti-
cal projection of the image onto the object
plane and are expressed in object-plane quan-
tities.

........ ......................... monochromatic point-spread function in the
image plane. p' is expressed in image-plane
quantities; pX - p>/# 2 .

q *..................... An arbitrary space-time function and its fou-
rier spectrum.

rcm and rar ............ Reciprocal centiimter and reciprocal milli-
radian, units of spatial frequency.

RX........................ Peak value of monochromatic responsivity on
the surface of a detector element.

................................... Surface of a detector element, Fig. 2.
s..... .......................... Detector or sensor output before measurement.

The unit may be Cuamps, carriers/sec, volts,
etc.] depending on the corresponding unit of
RX.

8,\ S* S.................... Spectral output of a detector element and
fourier transform of sX, Eqs. (19a,b) and
(43ab).

*.f* Sef.................The pseudoimage and its fourier spectrum.
s>\f is analog-processed spectral output of a
detector elument whose center may be located
anywhere in space. Eqs. (20ab), (21a,b),
(46a,b), and (47a,b).

*<s,\f>........................ The pseudoimage when analog processing in-
cludes temp~oral averaging of s,\ during tem-
poral-integral sampling.I ........................ Timn.

at..... ......................... Intraimage sampling period (time between sam-
ples) for an image from a scanning sensor; At

-Ax/C, Fig. 3.
T ....................... The epoch of an image (data frame), i.e.,

time at a chosen moment during image acqui-
si tion.

Vi



AT ...................... Time between images, i.e., interimage (inter-
frame) sampling period.

ubX * Ub ................. Apparent background spectral irradiance
and its fourier transform, Eqs. (2a,b) and
(39a,b). Both include atmo~spheric properties
eaX and optical paramewters (eX.(A/d21.

...... ........................ Spectral irradiance distribution in a gauss-
ian image, Eq. (4).

u...................Spectral irradiance distribution in the actu-
al image. Fig. 1, Eqs. (8) and (11).

ux* Ux ................. ux is the spectral irradiance distribution in
the image after geomtric-optical projection
onto the object plane, Fig. 1. UX\ is the
fourier transform of uX, Eqs. (13a,b) and
(40a,b).

v ....................... Detector or sensor output after masurement.
The unit is assumed to be volts, requiring
the corresponding unit of RX to be volts.

4f* ... ...................... An instantaneously sampled pseudoimage sxf
and its fourier transform, Eqs. (24a,b) and
(49a,b).

\',\*...Xf...............An instantaously sampled and cropped pseu-
doimage s), and its fourier transform, Eqs.
(28a,b) and (50a,b).

.......................... These represent 4), and \4,\f\ when formation
of the pseudoiage s,\ includes temporal
averaging during temporal-integral sampling.
Eqs. (26a,b),(29a,b).

wv ................... An arbitrary space-time function and its fou-
rier spectrum.

(x~y,(x ..'............ Object- and image-plane coordinates, Fig. 1.
(xb,Ym),(x,y;) ........... Coordinates of a background (object) point

and its ideal gecmetric-optical image point,
* Fig. 1.

(ax',Ay') ................. Image-plane coordinates (x'-x,,y'-Y4) meas-
ured from a gaussian image point, Fig. 1.

(XciYc).................. Central coordinates of a detector element
after geoumetric optical projection onto the
object plane, Figs. 2 and 1.

AxAy.................... Spatial sampling intervals, Figs. 3 and 4.
z * Z .................. An arbitrary space-time function and its

fourier spectrum.

Vii



Greek Letters

(,)................... Detector-center coordinates for analog pro-
cessing of detector output sX, i.e., pseudo-
image (s\) coordinates corresponding to
(xcYc), Eqs. (20a,b) and (21a,b); also cen-

tral coordinates of all possible areas for
integration of image irradiance by the detec-
tor, Fig. 3.

__ r . ...................... Detector-response function and detector
transfer function. y describes the photo-
sensitive surface of a detector element (Fig.
2) and any variation of responsivity on that
surface.

e. . .. ............. .. . .. .Sampling duration, i.e., time required to
measure a sample.

...........................Scan rate.
ea,, e..................... Monochromatic transmittances of atmosphere

and optics.
X .......................... Radiant wavelength.
S................Optical magnification m X4/Xb - Yg/b

Fig. 1.
......Time at which output from analog processing

occurs, Eqs. (20a,b) and (21a,b).

........ Incoherent, spectral, radiant flux at object
and image planes, Eqs. (1),(6),(7).
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MLTIDINION4AL SYSTEM ANALYSIS

OF ELECTRO-OPTIC SENSORS WITH SAMPLED DETERMINISTIC OUTPUT

I. INTRODUCTIC4

much effort has been and is being devoted to collection of optical
background datAC. The utility of these data would be increased signifi-
cantly if it were possible to calculate from them the values that would
have been measured in the sam circumstances with an optical sensor of
lower spatial resolution and sampling rate. There have been intuitively
based attempts to do this, but to know whether or to what extent the re-
sults are valid, the comutations mist be based on a more rigorous and
comprehensive analysis of the sensor and sampling.

Such an analysis is presented here. Staring sensors and one type
of scanning sensor are treated; the scanner is the type that sweeps the
image to and fro over the detector. System equations are derived initi-
ally in the space and time domain where the mathematics are easily re-
lated to physical reality. These equations then are fourier-transformed
to the frequency domain to complete the system description. None of the
material is wholly new. This is a review article whose purpose is to
collect known results from diverse sources and provide them in a useful
form in one place. The results can be used not only for synthesis of
background data as mentioned, but also for equalization (correction of
data for instumntal effects), and for engineering of electra-optic
sensor systems.

II. SPACE- AND TIME-DOMAIN DERIVATION4S

With one exception the treatment will follow physical and exper-
iimntal order, according to which the equations fall into groups de-
scribing image formation, detector response, analog processing, sampling
of sensor output, and image cropping. Cropping or truncation of the
image is formulated last for mathematical convenience, although physic-
ally it occurs during image formation or sampling. Functions represent-
ing the analog outputs of the sensors are constructed first. Next the
types of sampling permitted by sensor motion, spatial integration of im-
age irradiance, and temporal integration of sensor output are described.
Lastly functions representing sensor output sampled in each of these
ways are formulated. The relations for staring sensors depend on time
and two spatial coordinates, and the results describe a temporal se-
quence of sampled images. Scanning links time and the spatial coordi-
nate in the scan direction. Consequently, the relations for scanning

Mantiscript approved October 2.,1987.



sensors are only two dimensional; they depend either on two spatial
coordinates or on time and the cross-scan spatial coordinate. moreover,
the results describe only one sampled image. This restriction stems
from the functions used to represent the space-time constraint and the
sampling.

The functions that describe the optics vary only with the spatial
coordinates; those that describe analog processing vary only with time;
and those that describe sampling vary with both the spatial and the tem-
poral coordinates. Thus a coordinate can be a variable or a parameter
at different stages of the analysis. The two types of dependence are
distinguished by placing variables on the left of a semicolon separating
the arguments of a function, e.g., w(x,y,t), W(xpy;t), W.(t;x,y). All
independent coordinates can be separately varied or held constant at any
stage of the analysis. But if a spatial or temporal coordinate that has
been a parameter is subsequently varied, or vice versa, extra manipula-
tions are required to derive the corresponding frequency-domain rela-
tions. A simpler alternative is always to keep the full complement of
variables in the space-time equations. This can be done by convolving
the equations with delta functions. The technique is further explained
when used. It can always be assigned physical meaning.

All derivations are given in detail. This has advantages and draw-
backs. The chief advantages are that assumptions and approximations are
made evident, and the results can be used or modified easily for compu-
tations in a variety of circumstances. on the debit side, the details
may hide the main results and the outline of the derivations. To combat
this tendency, equations expressing the main results are marked with ar-
row prefixes *, and the analog output equations are sunmarized in sub-
section II.D using a concise notation. Anyone who wants an overview of
the derivations can profitably refer to this subsection at any time.
Because units are required for numerical work, typical units are given
for most quantities, but other units can be used without changing the
equations.

A. Image Irradiance

Figure 1 represents an optical sensor viewing a distant source ofI incoherent radiation. The optics may have one element or several. The
figure exhibits the coordinates and some of the notation as follows:
Aprime designates the image plane, its lack the object or background

plane; a subscript b denotes a background quantity, its absence an image
quantity. This seemingly redundant notation is employed for expository

purposes. The letters n and u stand for radiance and irradiance; spec-
tral and monochromatic quantities are indicated by a subscript X for
wavelength. The distance from the optical aperture to the background
is d; FL is the equivalent focal length. The aperture stop of area A
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may or may not be circular; the field stop is a photosensitive detector
in the image plane. Other notation will be introduced and defined as
needed.

The object is viewed in a small field at near-normal incidence, al-
lowing the sensor's subt,,4,nse to be equated to (A/d2 ), and the direction-
al dependence of object radiance to be neglected. The object's near-
normal spectral radiance is nbX(xb,Y b ) [watts/(cm2 .steradian-micron),]
with temporal dependence momentarily disregarded. The combined trans-
mittances of atmosphere and optics along a line of sight are eaxex. Un-
der these conditions the flux in wavelength range X to (X+dX) collected
by the optics from an area (dxbdYb ) at object point (xb,Y b ) and imaged
in the focal plane is (ref. 1, 55.5; ref. 2, 55.6; ref. 3, 511-5)

d -,V eae,. LOX (dxbdyb) w/2)d\ (watts]. (1)

In order for detector output to be time dependent, nbX in Eq. (1) must
depend implicitly or explicitly on time. Scanning converts spatial de-
pendence of radiance to temporal dependence. For treatment of scanning
sensors, therefore, object radiance can be assumed time-independent dur-
ing a scan and denoted by nb(xb,yb;T), with T specifying the epoch of
the scan or image. With a staring sensor, object radiance must be an
explicit function of time nb\(xb,yb,t).

It is convenient to define an apparent background irradiance ub,
even though it has no physical significance.

* %b(xbIyb;T) or %•(xbIybDt) a [watts/(cm2.micron)]
yb dXJ

Sa. [ex(A/d 2)].[nbX(xb,yb;T) or nbx(Xb,yb,t)]. (2a,b)

This simplifies notation and allows subsequent equations to be written
more concisely. The physically significant quantities, however, are the
optical parameters [ex(A/d2 )], the atmospheric properties eaX, and the
background radiance nb\. Further conciseness is achieved by omitting
the spatial and/or temporal dependence of radiance and irradiance when
no confusion is likely.

The points (Xb,y b ) and (x',y') in Fig. 1 are related through the

optical magnification u, a negative number that accounts for image in-
version and change of scale between the object and image planes. If
image distortion (curvature) is negligible,

14 " /x"' " Y/Y - FL/d. (3)
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These equalities follow frm the ray geometry of an optical system with
a single converging thin lens, and they define the equivalent focal

length of a comound optical system. If the aperture stop is circu-

lar, A - xD2/4, and the equivalent "F" number is Frff - FL/D. From
these relations the subtense of the optics at the background is (A/d2 )

- (K/4)(u/ff)2 . This equality can be used to replace the subtense in

Eq. (2), but the apparent background irradiance still depends on
background range through # and eax.

If the optics formed a gaussian (ideal geometric) image, d3Y> would
illuminate an image area (dx 'y) - #2 (dxbdb). The spectral irradiance
of the geometric image then would be

u(xgYg) d 3 2XuXx'b [watts/(cft2.micron)]. (4)
dx'dy'd - 2

In fact, flux from an object point is distributed in the image plane as
described by the monochromatic point-spread function

p ;(xg,y :x,y') - pk(uXbuYb:x',y') (cm-2]. (5)

The point-spread function accounts for blurring of the image by dif-
fraction and aberrations; other sources of blurring are mentioned
later. The fraction of d3YX that illuminates an image area (dx'dy') is
p -dx'dy'. From this it is evident that p has units of reciprocal area
in the image plane and is normalized so that _L pj.dx'dy' - 1. The
spectral flux received by (dx'dy') from (dxbdyb) is, therefore,

d5 ' d 'p'x'y) = Ua ybdX)(p'dx'dy') [watts]. (6)

Now if (xbyb) is moved over the background, (x;,y;) moves over the i*-
age, and flux increments from all object points can be smined to give

the total flux at (x',y'):

3  
- [ xbyb)y.px( Xb,uyb:X ,y ).ddYb dx'dy'dX (watts]. 7!

The bracketed term in Eq. (7) is the actual image spectral irradiance,

ux(x',y') ' fUbxPx.dbdYb [watts/(cm2 micron)]. 8

Coarison of Eq. (8) with the geometric image irradiance Eq. (4 shows
that the actual irradiance contains the scale factor (i/u2 ) implicitly
in the point-spread function.

4
04



Eq. (8) expresses the image irradiance as a weighted linear super-
position of the apparent background irradiance ub\. But the weighting, I

factor p changes functional form with shift of (Xgyg) - (.Axb,M),
and so Eq. (8) cannot be simplified by fourier transformation (ref. 4,
pp. 40,108-110). In limited regions of the optical field, however, pj

is almost a shift invariant function of the local coordinates,

ax'= x-Xg M x'-4 ux and Ay' - y -yg -/Jb [cm] (9)

that is,

p.(x;,y:x',y') P(x'-uxb,y-MYb) [e-2. (10)

A region in which the point-spread function is adequately approximated

by Eq. (10) is known as an isoplanatic patch (ref. 5; ref. 6, pp. 15-16,
19). In an isoplanatic patch the image spectral irradiance is given by

U x',y') - JJ p x-xby-yb-~ (watts/(on 2*uzicron) 1. (11)

This is a 2-0 convolution and so is reduced by fourier transformation
to a simp~le product of two spectra. Thus, fourier analysis of an opti-
cal system is useful only in an isoplanatic patch. A large field of
view may have to be divided into several isoplanatic patches to permit
fourier analysis over the whole field.

The image can be blurred by atmospheric turbulence, aerosol scat-

tering, and sensor motion as well as by optical aberration and diffrac-
tion. These effects can be accounted for at least approximately by in-
cluding in the integrand of Eq. (11) other multiplicative terms like p'
(ref. 7, 513.2; refs. 8-13). Such terms also may exhibit isoplanatic
effects; that is, they may be approximately shift invariant only in lim-
ited regions of the optical field (ref. 14). For simplicity, factors
representing additional blurring of the image are omitted here.

Eq. (11) is nevertheless inconvenient because it contains both
object-plane and image-plane coordinates which differ in scale and ori-
entation. This awkwardness can be eliminated by projecting the image
plane onto the object plane under ideal conditions - gaussian optics, no

Patmospheric absorption or turbulence, no sensor motion, etc.. The pro-
jection is indicated in Fig. 1 by the ray from (x',y') to (xy). In
this way Eq. (11) becomes

M

ux(x'y) fJ bX*UXA'Pxb'Y-Yb)'dxbdyb [watts/(cm 2 micron)], (12)

5



with ub given by Eq. (2a or b). Here PX and ux are the point-spread
function and image irradiance expressed in object-plane quantities; Px
and p have the same functional form, but Px has units of reciprocal
area in the object plane and is normalized so that I-, p).dxdy - 1.
Also p>, - o2 p, since pX\-dxdy must equal p .dx'dy' Henceforth all
image-plane quantities are to be converted to object-plane quantities
before substitution into the equations.

Two variations of the treatment above should be noted. First, Eq.
(12) can be derived in fewer steps simply by reversing the directions of
the image-plane axes in Fig. 1 and equating the magnification to unity
at the outset (refs. 5,6). Though efficient, this befogs the physical
meaning of the mathematics and the substitutions needed to obtain numer-
ical results in actual cases. The derivation given here deals explicit-
ly with these issues at the cost of lengthiness and a more elaborate no-
tation than is essential. Second, some authors prefer the reverse of
the projection employed here; that is, they project the object plane
ideally onto the image plane and use Eqs. (3) and (4) to write Eq. (11)
in term of image-plane quantities (ref. 3, 5511-5,11-6; refs. 15,16).
This is convenient if the problem being solved is in the image plane;
Eq. (12) is more useful if the problem is in the object plane.

It is now necessary to examine the temporal dependence of Eq. (12)
and its consequences more closely. With a scanning sensor, ub\ -
ubX(xb,yb;T), and the convolution includes all variables. when the time
and temporal-frequency variables are introduced later, they will merely
replace x and the conjugate spatial-frequency variable kx . Thus, no
awkwardess will develop in the relations of either the space-time or
the frequency domin. With a staring sensor, ubX - Ub\(%,yb, t), and
the convolution includes only two of the three variables. Time could be
treated as a parameter and later regarded as a variable for describing
analog processing, but this would make both the space-time and the fre-
quency relations ungainly. A better alternative is to convolve Eq.(12)
with a temporal delta function 6(t-t) . In physical term this selects
image and object irradiances at a particular time tO. out tO is contin-
uously and arbitrarily assignable, so mathematically time remains a var-
iable. This expedites fourier transformation and avoids the need to in-
troduce time and temporal frequency as variables later. Thus, conven-
ient image-irradiance functions for analysis of scanning and staring
sensors are

MI

uX(x,y,T) - uIX(xbyb;T).pX(xxbyyb).dbdyb

9 ex*[(le (Ad 2)]jn %X.PX dxb dyb [watts/(cm 2.micron)], (13a)
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and

* u (x,y, to) - JJJ ub(xbybt).[pX(x-x,y-yb)• (t-t) ]dxbdybdtI! --

SaX* LXWA/ 2JJJJf n W lp-6-xbdbdt [watts/(au *micron)]. (13b)

B. Detector Response

Next consider the arbitrarily-shaped detector in Fig. 2 with center
at (x,y) - (xc,yc) and monochromatic responsivity RX, constant across
the detector surface S. R, will be expressed in (amps/Amtt) before
measurement of response, but in (volts/watt) afterward, because detector
current usually is measured by the voltage it produces across a capaci-
tor. Image irradiance is assumed to vary slowly relative to detector-
response tim, so that the detector always responds fully to the illumi-
nation. The output from flux of wavelengths X to (X+dX) is then

ds-R~X.f u.dxdy aus.(14)

S

Eq. (14) could be integrated over wavelength to find the total output,
but it is convenient instead to define spectral output

* - R,.fJ u,.dxdy (ampsIficronl. (15)
S

Notation is now simplified by postponing the integration over wavelength
until the final result is obtained.

Eq. (15), though correct, does not transform to a useful frequency-
domain relation. A suitable alternative can be obtained, however, by
inventing a detector-response function (Fig. 2) such that

y(xc-X,yc-y) - 1 if (x,y) is on the detector surface,

- 0 elsewhere. (16)

With this function Eq. (15) becomes an easily transformable convolution:

s (xc,yc) - RX.f uXx,yl,[lXc-XYc-y)dxdy [amps/micron]. (17)

7
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For the rectangular detector of width a and height b in Fig. 2,
y is the product of two unit-amplitude rectangle functions (ref. 4, pp.
52,243):

y-rect (c).rect (cY

- if (x.)< x < (.)an (c-j< y < (yc4)i

- 0 elsewhere, (18)

Response functions and their fourier transforms for some other detector
shapes are given in reference 17, pp. 93-96. More generally, if the
detector's responsivity varies across its surface, the variation can be
included in y; the tops of the functions in Fig. 2 then would be curved
instead of flat. Since the detector is the field stop, it acts as the
type of spatial filter called a reticle. Consequently, response func-
tions for more complicated detector shapes and responsivities can be de-
rived by reticle design-methods from specifications for the detector's
spatial frequency response (ref. 18, pp. 485-502; refs. 19-22).

Eq. (17) with uX - u>(x,y,;T) from Eq. (13b) approximates very
nearly the momentary output of a detector whose field of view is swept
over the background, provided the detector response-time is much less
than the dwell time of an image point on the detector. Since addition-
ally ux is assumed constant during a scan, the time dependence of the
output is easily formulated. With a constant scan rate C in the x dir-
ection, xc - xo+tt for a single scan. (For repeated scans the relation
between xc and t is a sawtooth wave, and u> is not independent of t;
this case is not treated here.) Because Eq. (17) is shift invariant,
the location of the origin is immaterial (ref. 3, pp. 108-110), allowing
it to be chosen so that xo - 0. The scanning detector output is then

M

s(Ctlyc ) - RX.JT uX(xy;T).y(Ct-xyc-y).dxdy (amps/micron]. (19a)

Eq. (17) with u\ - u\(x,y,tO) from Eq. (13a) also describes the
time-dependent response of a detector whose field of view is fixed rel-
ative to the background. But the convolution of Sq. (17) involves only
the two spatial variables, so as already explained an additional convo-
lution with a temporal delta function is needed to avoid awkwardness in
the equations. This gives for the output of a staring detector
*s(xc,yc, t) -

8X (xCc c)

RX-J f u(x,y,tO).(xc-Xyc-y).6(t-to)].dxdydt [amps/micron). (19b)
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Eq. (19a or b) represents the deterministic component of output
from a detector whose center is located arbitrarily in space. The out-
put also contains random components from temporal fluctuations of photon
arrival at the detector and free charge in the detector. Only the de-
terministic component is considered in this work.

C. Analog Processing

If the detector output is sampled directly and instantaneously,
Eqs. (19a and bY are suitable for constructing functions to represent
sampled images. Before sampling, however, the output may pass through
one or more stages of analog processing. As discussed later, the inte-
gration step of temporal-integral sampling usually can be treated as the
final stage of such processing. Prior to that, the detector output
often is sent through an analog low-pass or band-pass amplifier. This
serves mainly to (1) raise the output well above any interference that
might be picked up, (2) limit the dynamic range of the output, and (3)
reduce aliasing by band limiting the random temporal frequencies.

It will be assumed that each stage of analog processing, including
any temporal integration, is linear and shift invariant. The overall
effect then can be described by a single impulse response h( r), which is
the convolution of the impulse responses of the stages. The processed
detector output is the convolution of h( ) with Eq. (19a or b). Neither
of the latter convolutions involves the spatial variables. Thus, for
reasons already explained, it is convenient to perform additional convo-
lutions with one or two spatial delta functions. The processed outputs
of scanning and staring sensors then are given by

a

S *am or volts] (20a)sX(, - x( tY)[(-)8BY)'t L micron j

and

a 5Xs( ,Ot) -

sI sx(x c,Yc, t ) •[8(a-Xc ) •(-yc) .h(--t )] .dXcdycdt. (20b)

The convolutions involving h( ) are written in the usual way, so that
is the continuous time at which the output occurs. Likewise a and 0

are the detector-center coordinates of the analog-processed output and
are continuous variables. If there is no analog processing, h(t-t) -
S(T-t). The temporal convolution of Eq. (20a) has a curious appearance
because the argument of s, is not t but position of the detector center
Ct - xc. Nevertheless, the integral correctly associates values of

9
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s(Ct,yc) with thb e of h(--t) and so gives the processed output cor-
rectly. The su' script f on the output symbols indicates filtering,
which is apprrriate since linear, shift-invariant processing has a fil-
tering effect. The output units are ((amps or volts)/icron] depending
on whether R\ in Eqs. (19a and b) has units of ((amps or volts)/watt].

D. Sv-,opsis of Analog-Response Equations; the Pseudoimage

The equations for analog output have been derived by steps. At
aach step a function symbolizing a physical or experimental process was

convolved with a function embodying the result of all prior processes.
Thus the derivations can be sumrized concisely by writing only the in-

tegrands and using the character I to indicate the integrations. With
this notation the functions symbolizing the analog outputs of scanning
and staring sensors are, respectively,

* sf(T, 0;T)/R>' - Ux(X b,yb;T) eq p\(x-xb,y-yb )

Y( tx,yc-y)

----o• [h(-t).6(0-c)j, (21a)

and

Sa sf (a, O,-)/R X - ubX(xbIYbIt) [pX(x-xby-¥b).&(to-t)]

[ ( Y(xc-Xyc-y) -6(t-t")

e [ 6(OPXc do'(0.yc)h(T-t) . (21b)

(This notation differs from the usual one which employs asterisks and
omits the integration variables, e.g., z(x) a g(x)*w(x). Here the ben-
efits of displaying the integration variables outweigh the liabilities
of an unfamiliar notation. Reference 23 discusses deficiencies of the
standard notation for use in optical analyses.)

By derivation Eq. (21a or b) represents analog-processed output
from a single detector with center located arbitrarily in space. out
since the detector center can be anywhere, Eq. (21a or b) gives the sen-

sor output over all space. Thus s>.f can be regarded as a function de-

scribing a pseudoimage - the actual image blurred and otherwise altered
by the detector and analog processing of its output. This interpreta-

tion is probably best for treating sampling and understanding the fou-
rier spectrum of the sensor output. Typical units of s\f are (volts/
micron] when detector monochromatic responsivity R\ is expressed in
(volts/watt]. The factors on the right sides of Eqs. (21a and b) are
the apparent background spectral irradiance (ubj,), the monochromatic
point-spread function of the optics (p\), the detector-response function
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(y), and the overall impulse response (h) for all stages of analog pro-

cessing including, if applicable, the integration step of temporal-inte-
gral sampling. More explicit expressions for ub\ and y are given by
Eqs. (2), (16), and (lSI. Eqs. (13a,b), (19a,b) and (20a,b) display the

integral forms of the convolutions in Eqs. (21a,b).

E. Sampling

For clarity, sampling will be described qualitatively before it is
treated mathematically. Spatial sampling of an image can be implemented
wholly or partly by arrays of photosensitive elements. As suggested by
Fig. 3a, the elements of a staring array frequently are square and lie
side by side in rows and coluums. The elements of a scanning array
(Fig. 3b) often are rectangular and are stacked in columns normal to the
scan, with the centers of elements in adjacent columns staggered in the
cross-scan direction. The cross-scan fields of view may be contiguous
or overlap as in the figure. Each element may have its own amplifier,
but if so the amplifiers have the same impulse response, so that the
output in any channel is given by Eq. (21a or b).

"qs. (15) and (17) show that the analog outputs result from spatial
integration of image irradiance by the finite-size detector elements.
Depending on the type of sensor, this represents partial or complete
spatial integral-sampling of the image, which results in aliasing of
image spatial-frequencies unless they are properly band limited (refs.
24,25; ref. 26, sec. 6.3.2; ref. 27, ch.9). With a staring sensor both
the row (y) and colum (x) spatial-frequency components can be aliased
in the analog output because the detector geometry and mode of operation
spatially sample the image in both directions. Consequently, with a
staring sensor, spatial band-limiting can be achieved only by optical
means (control of blur-circle and detector sizes). on the other hand, a
scanning sensor spatially samples the image in the cross-scan (y) but
not in the scan (x) direction. Thus, the cross-scan spatial-frequency

_on.Mts ky can be aliased in the analog output, but the co-scan com-
ponents kx cannot be. In addition, scanning converts the x components
to temporal frequencies which, assuming no lag in detector response, are
given by f - rkx . It follows that the cross-scan spatial frequency com-
ponents can be band limited only by optical mans, but the co-scan com-
ponents also can be band limited by sending the detector output through
an analog amplifier. Ordinarily, however, filtering by the detector
size attenuates the spatial frequencies far more.

An optical sensor's analog output usually is further sampled in

time. This always involves charging a capacitor and, thus, temporal
integration of charge, but the sampling is effectively instantaneous if
the output and the sensor's field-of-view change little during sample
measurement. In any case, the resulting samples may be assigned to
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points of space and moments of time at the centers of the spatial and
temporal integration intervals. Together, spatial and temporal sampling
impose on the image a pattern of irradiance-integration areas and sample
sites at intervals of (Ax,Ay) as shown in Fig. 3. The sample sites are
labeled by integers (l,m) so that their coordinates are (lx,may). With
a staring sensor, spatial and temporal sampling are independent. The
integration areas are always identical to the detector-element areas and
so cannot overlap (Fig. 3a). With a scanning sensor, spatial and tempo-
ral sampling are linked through scan rate C, sampling duration c, and
sampling period at > c. Temporal sampling induces spatial integral-sam-
pling of the image in the scan direction and results in aliasing of the
co-scan spatial-frequency components kx unless they have been band lim-
ited either optically or electronically. The integration areas exceed
the detector-element area unless the detector moves little during sample
measurement (Cc << a). The integration areas can overlap, adjoin, or be
separated in the scan direction depending on whether (a+Cc) >, -, < Cat.
rig. 3b shows a case in which (a+Cc) > Cat and c < At, so that the co-
scan overlap (a+C(e-At)J is < a. It should be noted that in Fig. 3b the
offsets between the responses of detector elements in different columns
have been removed to align the sample sites in the cross-scan direction.
This can be done in one of three ways: by electronic delay before sam-
pling; by making the ratio of column interval to sampling interval an
integer and then shifting samples in different rows by the corresponding
humier of sites; or by interpolation of the sampled outputs. The second
method is much the simplest in both practice and theory; the first is
cuMersome to implement, and the third is equivalent to reconstructing
the output.

(The type of sensor and sampling used in a particular case depend
on the spatial and temporal coverage needed and certain engineering con-
siderations. If the background or signal radiance changes during the
scan time, a staring sensor mist be used when temporal information is
important, even though spatial information is lost between the integra-
tion areas. on the other hand, if the background and signal radiance
are constant during the scan tim, a scanning sensor is preferable since
it allows complete spatial coverage and smaller spatial sampling inter-
vals in both the scan and cross-scan directions. In practice, temporal
integral-sampling usually is employed for surveillance, instantaneous
sampling for data ollection. Charge from the detector of a surveil-
lance sensor customarily is stored during successive time intervals of
fixed duration, and the resulting sequence of charge packets is read out
through a single lead. This procedure is followed because the detector
cormmly has too many photosensitive elements to permit a lead for each
one. The detector of a data-collection sensor ordinarily has fewer ele-
ments, and temporal integration of the output is undesirable because it
adds another instrumental effect to the data.)
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The stage is now set for derivation of the 2-D sampling equations
except for one item: Attention is directed to a lucid graphical and al-
gebraic treatment of temporal sampling in chapters 5 and 6 of reference
28, and to a brief overview of 2-D spatial sampling in section 6.3.1 of
reference 26. Anyone who has trouble following the derivations below
should first study these sources.

Sampling of a temporal wavefrom is most often treated as amplitude
modulation of a pulse-train carrier by the waveform; that is, the pro-
cess is represented mathematically -, a product of carrier and waveform
functions. The carrier pulses usually are identical, equally spaced,
and rectangular. Other kinds of sampling are possible, but this is the
most c nmi= type. Sampling ordinarily is followed by holding, quanti-
zation, and encoding of the sample values. (Ref. 29, 5S2.4,2.6) The
present treatment is limited to the most comon type of sampling with no
consideration of the last three steps.

For "instantaneous" sampling the pulse width (sampling duration c)
is less than both the time between pulses (sampling period At) and the
least time constant of the waveform. The carrier then can be approxi-
mated mathematically by a comb distribution (ref. 29, pp. 52-59; ref. 3,
53.2):

combft/at) &(t-rat) [sec -1  (22)lAtl

To sample the multiple outputs of an electro-optical sensor, there must
be a pulse train at the position of each output. with a scanning sensor
this requires a pulse train at the cross-scan position of each detector
elemsht. The carrier function for instantaneous sampling during a sin-
gle scan can be written as the product of a temporal and a cross-scan
spatial comb (ref. 3, S3.4):

comr/at) ' c I. " X" ( -lat)- . 8(0-my) [(cm.sec)-'1. (23a)

The time variable is represented by r to agree w.th Eq. (21a). In Eq.
(22) On" is the temporal summation index; in Eq. (23a) "1" is used in-
stead to indicate the equivalence of time and position in the scan (x)
direction. Eq (23a) tacitly represents a 2-D spatial array of impulses

*that are deployed column-by-colmn at intervals of Ax - Cat during a
scan. Because the time AT between images must be at least as great as
the scan time, it is necessary that AT > (l-1)4t, where 1 is the number
of columns in the impulse array. Thus Eq. (23a) is limited to one scan;
it cannot be used in representing a sequence of images from successive
scans, a problem not treated here.
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The carrier function for instantaneous sampling of a staring sen-
sor's output is effectively a temporal sequence of impulse arrays. It
can be written as the product of a temporal comb with two spatial combs:

comb!cVx), coub( "/A ),com /4T) [(cm=.sec)-1

Iaxi IAyl IATI

- (-lax). . 6(O-mAy)" . 6(T-nAT). (23b'
1- ,M no-

AT is both the sampling period and the time between sampled images (also
called data frames), so that the epoch of an image is T - nAT.

An instantaneously sampled image from a scaning sensor is now rep-
resented by the product of Eq. (21a) for the analog output and Eq. (23a)
for the sampling carrier:

* (dvldk)f a v rf(T,O;T) (volts/(micron-cm-sec)]

- f(r, 0; T)- 6(T-lAt). (Ay)

- , df(i't,[y;T). I6(]-iat)-6(0My)| . (24a)

The grave accents ' denote sampled quantities; the last equality follows
from the relation g(x).&(x-a) - g(a)-&(x-a); and the voltage unit indi-
cates units of (volts/Aatt) for RX in Eq. (21a). With a staring sensor
Eq. (21b) represents the analog output and Eq. (23b) the carrier, so
that the instantaneously sampled image is symbolized by

* (dvda)f a f (s, 0.) (volts/(micron-cm2.sec)j
" ]

j-Skf (a,0, T). - (0-lax). -. I "C- .y - (-n&T)

-)f(axmy "1 LC-lx X6 (0~-S A-y ) Sr-nT) (24b)

It should be noted that ">f( ,O;T) and v.f(',0,T) are distributions
(generalized functions); they are not arrays of sample values, which are
obtained by integration of Eqs. (24a and b). For example, the (l,m,n)th
sample value is obtained from Eq. (24b) by integration between the lim-
its [(i±c)Ax,(mtc)Ay,(n±c)At] with 0 < c < 1.

As already mentioned, sampling in operational sensors usually is
not instantaneous. Rather, the sampling duration is a significant frac-
tion of the sampling interval and the least time constant of the wave-
form being sampled. This is called finite-pulse-width or temporal-inte-
gral sampling. The reaan for the latter name will soon appear. A rig-
orous treatment of temporal-integral sampling is not simple, and the re-
suits are circuit-dependent (ref. 29, 52.7; ref. 30, ch. 9; ref. 31, ch.
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11; refs. 32-37). However, the following heuristic treatment is valid
for the most commonly used circuits. After modulation the tops of the
carrier pulses ideally have the shape of the modulating waveform in the
sampling durations. (Hence the modulation process also is called wave-
form chopping.) To obtain measures of the waveform amplitude, the modu-
lated pulse heights must be averaged over the pulse width. This can be
done by convolving the pulses with a unit-area rectangle function having
width c and, for causality, center (c/2):

1"ect[ 5 ± .-. i if 0 < t < C,

- 0 elsewhere. (25)

But the same result must be obtained if first the sensor output is con-
volved with the rectangle function, and then the time-averaged waveform
is sampled instantaneously at times corresponding to the trailing pulse
edges. Thus the most common integral samplers are equivalent to a lin-
ear filter (integrator) followed by an instantaneous sampler (ref. 29,
p. 42; ref. 3, pp. 283-285; refs. 36-37).

For simplicity, temporal integration of sensor output is included
in the overall impulse response for analog processing. In other words,
Eqs. (21a and b) represent temporally averaged or unaveraged waveforms
depending on whether h(-r) includes the equivalent impulse response of a
temporal-integral sampler. Consequently, Eqs. (24a and b) are easily
modified to represent integrally sampled images; with temporal averaging
indicated by angular brackets < >, the relations for scanning and star-
ing sensors are

c<v f(T,O;T)> [volts/(micron-cm-sec)]

<sXfl(T,O;T)>.I 6( -lat)" m ¥a..)
up-

-22<sl~f(1t,m~y;T)>- [8( -lt)a (-MIy)]I. (26a)

and

<vf(OL0,T)> [volts/(micron"cm2•sec) ]

- <Sf(a, 0 ,-)>. (m-lax). 2 .6(-may). 6(T-nAT)

-s 222 (lxmynT (26b)
l,m,nn-

Use of a rectangle function for waveform averaging assumes that the
sampling circuit forms an unweighted average of the pulse height. If
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not, the rectangle function is simply replaced by the correct weighting
function, which is the equivalent-circuit impulse response normalized to
have unit area. This is similar to inclusion of nonuniform detector re-
sponsivity in the detector-response function Eq. (16). With a scanning
sensor, temporal averaging of pulse height results in the irradiance-
integration areas of Fig 3b. This is physically obvious and follows
from Eq. (21a) and the comutative property of convolution. Thus the
treatments of spatial-integral and temporal-integral sampling are anal-
ogous and consistent.

Fig. 3 and the discussion above indicate that scanning and temporal
integration effectively reduce spatial resolution and detector respon-
sivity. Resolution is reduced because the integration area exceeds the
detector-elemnt area. Resposivity is decreased because at any time
the detector elemnt occupies only a fraction of the integration area,
whereas it always would occupy the whole area if the sensor were star-
ing.

Finally, it should be noted that neither instantaneous nor integral
sampling is shift invariant. The waveform-averaging step of integral
sampling is, but the instantaneous-sampling step is not. The sample
values depend on the phase between the comb function and the waveform
being sampled. This is important at low sampling rates.

F. Image Cropping

To obtain finite arrays of samples for recording, the images and
image sequences must be truncated. This is done physically by trunca-
ting the carrier before modulation (ref. 3, p. 278), but the order of
the operations is mathematically reversible because the result is ex-
pressed by an associative and commutative product of functions.

The cropping or truncating function for one image from a scanner is
a product of two unit-amplitude rectangle functions that select M rows
of the image and L samples in each row. For computation it is desirable
to have the summation indices of the cropped image function begin with
zero. This is accomplished as shown in Fig. 4 by placing the lower edge
of each rectangle function one-half sampling period below the coordinate
origin. The cropping or truncating function now can be written

crop( ,&tL:0, yM) - rect L- t ) rect 0I )1
L Lt j ma id

- 1 if (-At < 'r < (1 a.Jt and (::AX) < is < ay

- 0 elsewhere. (27a)
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Eq. (27a) is easily extended to obtain a function that acts on the sam-
pled output of a staring sensor to select and crop the image with epoch
T - 0. Recalling that Tr and x are equivalent in Eq. (27a) and that T
nAT, one sees that the desired function is

- rect[rce'M-1) (Ax2)] *rect [-(M-1)(Ay/2)] *rect[-r/AT]

- 1 i f (*A) < cc< (r--21)>x, (M:) < 0<(r-jy

and (-&T/2) < T < (ftT/2);

- 0 elsewhere. (27b)

Cropped images are represented by the products of Eqs. (27a, b) with
&ps. (24ab) and (26a,b). Thus, with \ \ denoting truncation, instan-
taneously sampled and cropped images with epoch T - 0 are, for a scan-
ning sensor,

*6 \4,f(rD0;T-0)\ (volts/(micron-cu-sec)J

- .(,O;TO)rect[ (L1(a~t/) .rect [ M1(y2

- ~ >1(~t~~y;TO).5(rl~t)6(0m.6)J,(28a)
1-0 Ono

and for a staring sensor,

Xf \'(t,O,T\ (volts/(micron-cm2*sec)]

(a ISr - eta L1(x2 rect Ls-Ml j .rect( T/AT]

- ) s(1x~may;T0).[8(C-laxl.8(0-"m6.( )]. (28b)
1-0 WmO

The corresponding integrally samp~led and cropped images from scanning
and staring sensors are

\<4 f (rO;T-0)>\ (volts/(micron-cm-sec) I

-<4 f( ,O;TO)>rect[ -(-1(A~t/) 3 rect (M-1)(Ay2)]

(L-1) (N4-i)
2 2 <S > (l~t,may;T-0)>-[8( -lt)*&(0-mby)), (29a)
1-0 uMO

and

\<4~~0 > Xf volts/(micron-cm2 -sec)]

(a 0, >- rcte-- 1))( x/2) I. rEc 15-(M-1) (Ay/2) 1 et[/T
XfL L~t *rc mayretr/T

(Continues)
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- X (Ix,M~y;T-0)>•[ (a-lx)• (O-mly)• (r) ]. (29b)

10 m-0

III. R=EQ CY-DOMAIN DERIVATIONS

Frequency-domain equations are obtained simply by taking fourier

transforms of space- and time-domain equations. For this purpose, cer-
tain definitions and mathematical relations are needed.

The fourier transform has been defined in at least six ways dif-

fering in normalization constant and sign of exponent. In addition,
both members of a transform pair have been called the inverse by dif-

ferent authors. The conventions and notation used here are, for the

transform,

G(kxkyf) a 3 rFgx,y,t)] a ffj g.exp(-i2n(kxx+kyy+ft)].dxdydt, (30)

and for its inverse,

-3 F[G(kx#kyf)] af G.exp(i27(kxx+kyy+ft)].dkxdkydf - g(x,y,t). (31)

A space-time function and its transform are denoted, respectively, by
the small and capital forms of a letter. The operator symbols 3Ft ] and
-3F1 ] are explained by the integrals. In these relations i - /(-1);
(x,y,t) and (kx,ky,f) are sets of independent, orthogonal coordinates
consisting of pairs of conju ;"es (x,kx), (y,ky), (t,f); f is temporal
frequency; and (kx,ky) are the Loagnitudes of the components of the spa-
tial frequency vector k - kx+ky . The unit of f adopted is the (cycle/
sec) or hertz (hz). Comn units of k are the (cycle/cm) and (cycle/
ar), which also are called the reciprocal centimeter (rcm) and recipro-
cal milliradian (rmr). The former is used here. Spatial frequencies in
the object and image planes are related by k - X', but this relation is
not needed here since all quantities are measured in the object plane.

with a staring sensor there are no constraints among the coordi-
nates. All are independent and can be treated as variables or para-
meters. Eqs. (30) and (31) then allow three-, two-, and one-dimensional
transforms. Examples of the latter types are

2F(g(x,y;t)I - G(kxky;t), IF[g(t;x,y)] - G(f;x,y),

-2F[G(kxky;f)] - g(x,y;f), -IF[G(f;kx'ky) - g(t;kx'ky).
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Scanning introduces the constraints xc - Ct and f - Ckx, which rule
out 3-D transforms. The choices of independent, conjugate coordinates
are (y,kv ) and either (x,kx) or (t,f). Eqs. (30) and (31) give differ-
ent 2-D transform pairs depending on the choice. Consequently, the
scaling relations between the results in the two cases are required.
These are well known but are displayed below for ease of reference.

2F[g(xy)] U ff g'exp[-i2n(kxx+kyy)]'dxdy a G(kx'ky) - G(f/Cky) (32)

An.

2F~g(M,y)J a Jj g-exp(-i2ir(ft+kyy)J-dtdy - rG(kx,ky)• g--

- -G(f/C,ky) (33)

-2F[G(kx'ky)] w ff G'exp[i2(kxx+kyy)]'dkxdky - g(xy) (34)

-2F[G(f/C'ky)1 a ff G-expli2n(ft+kyy)]-dfdky - C.g(x,y)

- C.g(ct,y) (35)

Two versions of the convolution theorem are needed. They are de-
rived in references 3 (p. 196) and 38 (p. 57) for one variable; deriva-
tions for two and three variables are easily developed from these ex-
amples, as in appendices A and B. one version of the theorem says that
the transform of a convolution is the product of the transforms of the
convolved functions. Because a variety of functions have been convolved
in Part II, this version is needed in all the guises below. For the
scanning cases it is also desirable to express the different forms in
terms of the two equivalent frequencies kx and f.
2F[ g(xo ,yO ) *w(x_x o ,y_yO) ]

- G(kxky).W(kxtky) - G(f/ ,ky)-W(f/ ,ky) (36a)
~2F[ g(x,y)ew (Ct -x ,y°-y ) ]

- G(kx~ky) 'W(kxky) - G(f/Cky) .-W(f/Cky) (36a')
~2F~g( Ct,yO )*0[q(tO-t) .w(y-yO ) ]

1 1 (6"

- (kx,ky)Q(Ckx)'W(ky) - tG(f/Cky)'Q(f)W(ky) (36a")

3F~g(x,y,t)*°°[q(xO-x,yO-y)'w(t°-t) ] - G(kxikyf)-Q(kxiky).W(f) (36b)

3F(g(xa,yO,t)@o@@q(x-xO) .w(y-yO) .z(tO-t) ])

- G(kx'kyf).Q(kx).W(ky).Z(f) (36b')
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A second version of the theorm says that the transform of a product is
the convolution of the transforms of the factors. Symbolically,
3F(g(x,y,t) • q(x) .w(y) .z(t) ] }

Eq. (37) suffices with this version because it is never necessary to
transform products with factors different from those shown, and because
the 2-D equation is obtained by omitting x coonents from Eq. (37).

The transform definitions and convolution theorem are expressed in
term of the general space-tim coordinates (x,y,t). In applying these
relations one mst recall distinctions already mode between (xy,t) and
other associated coordinates. For exple, (xc,yc) are the spatial co-
ordinates of the detector center, and (a,0) are the central coordinates
of the spatial integration intervals. Also the space-time scanning con-
straint is xc - Ct, not x - 4t. But there are no such distinctions be-
tween the frequency coordinates; (kX~ky,f) are conjugate to any of the
respective space-tim coordinates, and the scanning constraint for fre-
qumncies is f - Qkx regardless of the space-tim coordinates.

Frequency-domain equations are now derived by straightforward but
tedious application of the transform definitions and convolution theo-
rems to the space- and tim-domain results. Subsection IID sum rizes
the analog frequency-dmain equations and provides an overview which
cuts through the details of their derivation.

A. Fourier Spectra of Object and Image

From Eq. (30) the fourier spectra of the object radiance for treat-
ment of scanning and staring sensors are

Nbx(kxky;T) g 2 Flnb\(xb,yb;T)1 (watts/(cm2-strmicron-rcm2 ) I (38a)

and

Nb(kx,ky, f) m 3 Flnb,\(xb,yb,t)] (watts/(cm2.str.micron-rcm2-hz)]. (38b)

Transformation of Eqs. (2a and b) according to Eqs. (32) and (30) gives
the spectra of the apparent object irradiances in the two cases:

UbX(kx,ky;T) E 2 FrubX(xb,yb;T)] [watts/(cm2 .micronrcm2)]

4Pa). * [eX(A/d2)].bX(k.,ky;T) . 9aX.[ft(A,/d2)].NbX(f/C,ky;T); (39a)

UbX(kx,ky,f) g 3 FfubX(xb,yb,t)]

- a1eXx d2].Nb),k,,kyf) [watts/(cm 2.aicron-rcm2 hz)J. (39b)
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Fourier spectra of the image irradiances are obtained by transform-
ation of Eqs. (13a and b) using Eq. (30) and the convolution theorems of
Eqs. (36a and b):

Ux(kx,ky;T) a 2F[uX(x,y;T)] [watts/(cm2 "micron'rcm2 )]

- 2F[ubx(xb,yb;T)*OpX(x-xb,y-yb) ]

- Ub>(kx,ky;T)'PX(kx,ky) - UbX(f/,ky;T)-Px(f/C,ky) (40a)

Ux(kxky,f) u 3F[ux(x,y,t)]
- 3r{Ub(Xb,yb, t)*Oeep(x-xb,y-yb) -(t°-t} ]

- UbX(kxkyf)'PX(kxky) (watts/(cm2.icron.rc&2-hz)] (40b)

Since uX is image irradiance projected ideally onto the object plane,
all quantities in Eqs. (40a and b) are to be measured in the object
plane.

The factor P\ in these equations is the fourier transform of the
point-spread function:

PX(kx,ky) * 2 [pX(x-xb,y-y b )] (dimensionless] (41)

If pX is approximated by a circular gaussian function,

PX(kx,ky) . 2 F(c-2.exp(-X(x-xb) 2/c 2 .exp(-(y-yb) 2/c 2l)

a exp[- c2 (kx.k§)]. (42)

Eqs. (42) and (40a,b) indicate that the optics filter the object spec-
trim, as follows. The parameter c, which is a measure of the blur cir-
cle size, governs the variation of the gaussian functions. If the blur
circle is large, PX decreases rapidly with increase of (kx+k), and the
high spatial frequencies of Ub are strongly attenuated. For high res-
olution (reproduction of fine detail) the blur circle must be small,
i.e., the optics must pass high spatial frequencies. By analogy to
electrical filters, P\ is called the optical transfer function. Ref-
erence 39 is a thorough and readable account of this function's prop
erties, measurement, computation, and uses.

B. Fourier Spectra of Detector Response

Application of Eqs. (33) and (36a') to Eq. (19a) for a scanning de-
tector's output gives for the spectrum
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2FP[5X( t,yC;T)1 - Rx.-2FjuX(X,y;T)*Gy(Ct-x,yC-y)] (amps/(micron-rcmhz)]

1
-tX(kxiky;T) - (R>,/C)-UX(kx1ky;T).r(kx1ky)

1
-t~xf/C,ky;T) - (RVA) .UX(f/C~ky;T).r(f/c1ky). (43a)

Similarly, applying Eqs. (30) and (36b) to Eq. (19b), one finds for the
spectrum of a staring detector's output

SX\(kxiJkyif) 0 3F ,I.sX\(Xc,yc,t)J

w Rx.3F~uX(x,y,to)eoiy(xc-.x,yc-y).6(t-to)jJ

- RXU~xk~)rk'y [amps/(micron-rcm2*hz)J. (43b)

In these equations SX is the spectrum of the output from a single
detector element arbitrarily located in space. r(kx1 ky) is the fourier
transform of the detector-response function Eq. (16):

r(k, 1 ky) 0 2Fly(xc-x,yc-y)] [cu 2 or romg2J (44)

If the detector is rectangular, y is given by Eq. (18) and

r(kX'ky) -

[a-sinc(kxa)-exp(-i2wkxxc)]1. b-sinc(kyb) .exp(-i2nkyyc) 1' (45)

where sinc(kxa) - (sin nkxa)/1dcxa. Eqs. (45) and (43) show that, like
the optics, the detector filters spatial frequencies. Hence r is called
the detector transfer function. As the detector width (a) and height
(b) are increased, the first zeros of the sinc functions occur at lower
values of kx and Icr, resulting in greater attenuation of higher spatial
frequencies in the image spectra U>X. The detector usually attenuates
the spatial frequencies more than any other sensor component.

C. Pseudoimage Spectra

Eq. (20a) for the analog output of a scanning sensor is transformed
with the aid of Eqs. (30) and (36a") to obtain

S>,f(f,ky;T) * 2F~s>,f( ,jS;T)J ((amps or volts)/(micron-rcm-hz)]

-s \(kx~ky)-H(Ckx) - tSx(f/C1 kyT)-H(f). (46a)

Using Eqs. (30) and (36b') to transform Eq. (20b) for a staring sensor's
analog output gives
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S\f(kxkyf) * 3 F[s\f(a,13,T)) [(amps or volts)/(micron.rcm2 -hz)J

S3F(s (xc,c,t)o ([ 6(O-c)•6(0-Yc)-h( -t)])

- SX(kxkyf).H(f). (46b)

H(f) is the transfer function for all analog processing of a detector
element's output including, if applicable, the integration step of tem-
poral-integral sampling. S\f is the spectrum of analog-processed output
from a detector element located anywhere in space, or it is the spectrum
of a pseudoimage, as explained in the next subsection. The units of Sxf
(amps or volts) are determined by the units of RX (amps or volts/watt)
in Eqs. (43a,b).

D. Synopsis of Analog Spectral Equations

Analog frequency-domain equations have been derived stepwise by
fourier transformation of the analog space- and time-domain equations.
Each transformation gave a product of two spectra, one representing a
physical process, the other characterizing the result of all prior
processes. Thus functions representing analog output spectra from
scanning and staring sensors are obtained by substituting Eqs. (43a,b)
and (40a,b) into Eqs. (46a,b) respectively:

S 1S\(fky;T)/Rx - .%x(f/(,ky;T)Px(f/c ky)r(f/c1 ky)H(f)

1- -Ub,(kxky;T) •Px(kxky).r(kx, ky).H(ckx) (47a)

S)\f(kxkyf)/Rx - Ubx(kx,ky,f).PX(kx,ky).r(kx,ky).H(f) (47b)

The quantities on the right sides of Eqs. (47a and b) are the apparent
object-irradiance spectrum (Ub\), the monochromatic optical transfer
function (P\), the detector transfer function (r), and the overall
transfer function (H) for all stages of linear, shift-invariant, analog
processing. H includes the effects of any temporal integration during
sampling. Eqs. (39a and b) can be used to express UbX in terms of the
fourier spectrum Nbj\ of the object radiance. S\f can be regarded as the
fourier spectrum of a pseudoimage, i.e., as the spectrum (UbA.P A) of the
actual image modified by the detector and analog transfer functions, r
and H. With detector responsivity R\ in (volts/watt], typical units of
Skf are [volts/(micron-rcm-hz)] or (volts/(micron.rcm2.hz)] for scanning
or staring sensors respectively.

E. Fourier Spectra of Sampled Pseudoimages

Transforming Eqs. (24a and b) by means of Eqs. (30) and (37) gives
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the spectra of instantaneously sampled outputs from scanning and staring
sensors:

Vxf(f,ky;T) 0 2F[('Xf(T,;T)I (volts.(micron.rcm-hz)-I/(cm.sec)][ 1
. 2F sf(T, ;T)" &.(.-1At). X 6(0-Ay)

- S @f(fe,;T),Ifl 2 (f-if)-fo]Oky 8[(ky-maky)-k ]i (48a)

VXf(kx,ky,if) a 3F[(f(a,0,,T)] [volts.(micron.rcm2 .hz)-i/(cm2 .sec)]

- 3psxf(C,,)50- &(a-lvx)- (O-aby). &(--n&T)

- SXf(kx,k§,fo)OAkx L 6[ (kx-4kx)-kx1]

*f~ .:61 Lky-my)-q~j)*~fM nI: [(f-nAF)]-f@]} I48b)

Here Akx - (1/6x), ak - (1/by), Af - (1/t), and A? - (1/AT). The rep-
licating property of convolution with a delta function (ref. 3, p. 268;
ref. 4, p. 79) can be used to express Eqs. (48a and b) more compactly as
follows:

V~f(f~ky;T) - (4f.Aky) I I S>\f((f-1Af),(ky-uk);TJ (49a)

V,f(kx'ky 'f) -

(Akx-'Aky-A) I I S>,f((kx-lakx)#(ky-maky),(f.nMr)j (49b)

Eqs. (48ab) and (49a,b) also represent spectra of integrally
sampled outputs if ',f in Eqs. (48a,b) is replaced by <4,\f> from
Eqs. (26a,b).

Eqs. (49a,b) are the results expected by analogy with the familiar
1-D temporal case: The sampled-output spectra V>f consist of replicas
of the pseudoimage spectra S>f. The replicas are separated by frequency
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intervals (Af-CAkx,aky) with a scanning sensor and (AkxAky,AF) with a
staring sensor. The replicas overlap and aliasing occurs unless the
highest frequencies in S\f are less than half the respective frequency
intervals. As already explained, spatial integration of the image by
the detector acts as a low-pass filter, and temporal integration of the

output during sampling does the same. Thus spatial and temporal inte-
gration reduce aliasing of the pseudoimage spectra.

24

F. Fourier Spectra of Sampled and Cropped Pseudoimages

The spectrum of a single instantaneously sampled and cropped image
is obtained by transforming Eq. (28a or b) with Eqs. (30) and (37). The
image with epoch T - 0 is specified in the scanning case and selected by
the cropping function in the staring case. The results are as follows:

Vf(fky;T-O) s 2 F[\1 f( ,O;T-0)\] [volts.(micron-rcm-hz)-l/(m-sec)]

M 2FP[4),f( 0;T.O)rect( (L 4 )(At/2))-rect (0(M-1)(AY2)

- V>(f.,Jq;T-0)

*{(L/•f) sinc((f-fo)(L/Af)].exp[-in(f-fo)(L-1)/Af]}

*{(PVaky)-sinc(ky-k)('V4ky)J-exp(-in(ky-kq)(N-l)/Aky1J (50a)

V f(kx,ky,f) a 3 F[\4>'f(=,O, T)\] Evolts.(micron-rcm2 .hz)-l/(cm2.sec)I

- Fj+v\f(sg,O,-T) rect (L1( -rect ( -rect (V AT)J

-

{(L/akx)•sinc[(kx-k;)(L/kx) ]•exp(-in(kx-k; )(L-1)/Akx]}• ,/k y -in c ( ( y k ) M 4 y ] e p -m k - ) M 1 / k l
e{ (1/AF) •stnc[( f-f° )/4l } (50b)

The complex exponential phase factors in these equations can be elimi-
nated by centering the rectangle functions on the origin, but then the
lower limits of the corresponding spatial and temporal sms are negative
instead of zero.

Substituting Vxf(f,kM;T-0) and VXf(k;,k,,f*) from Eqs. (49a,b)
into Eqs. (50a,b) gives the following more informative expressions for
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V\f(fky;T-o) - (L-M) . .. S[(f°-lAf),(,-mYky);T-0
1, m.

*(sinc[(f-fo)(L/af)].exp(-in(f-fo)(L--)/Afl}

VXf(kxkyf) - (LM) , S>f[(k;-lkx),(k,-naJky),(fO-n F)]

•*lsinc[ (kx-k) (L/Ak x ) ] expf[-in(kx-k ) (L-1)/Akx ]

*(sinc( (ky-kq) (1wAky) Iexp(-in(ky-kq) (M.1)/Aky]I
*sinc [ (f-fo )/AF] (51b)

Eqs. (51a and b) state that truncating the sensor output broadens and
distorts ("ripples") the pseudoimage spectra S>f by convolving them with
the transforms of the cropping functions. The broadening worsens the
effects of aliasing in the sampled and cropped output. Recording large
images (making L and M large) moves the first zeros of the corresponding
sinc functions to lower frequencies and reduces broadening along the as-
sociated frequency axes. Recording many images from a starer similarly
reduces broadening along the temporal frequency axis since (N/AF) re-
places (1/M) in Eq. (50b).

Eqs. (50a,b) and (51a,b) also represent spectra of integrally sam-
pled and cropped outputs if \;kf\ is replaced in Egs. (50a,b) by \<'kf>\
from Eqs. (29a,b).

U
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rig. 1 -Schematic diagram of electro-optic sensor viewing distant scene.
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Fig. 2 - Zero-one response functions, Eqs. (16) and (18),
for arbitrarily-shaped and rectangular detectors with constant
responsivity on their surfaces S. Note distinction between
image (x,y) and detector-center (Xc,yc ) variables.
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rFig. 3 --Sampling geometries for staring and scanning
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Fig. 4 -Rectangular image-cropping (zero-one) function
Eq. (27a) that provides M rows and L column~s of samples.
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APPENDIX A. 2-D Fourier Transform of a Convolution, Eq. (36a')

To simplify notation let 12off,' an

c( Ct,yc;T) a g(x,y;T) 'd( t-x,yc-y) *dxdy. (Al)

Then from Eq. (30)

2F~cJ . g~~;)wC-~cy-xy-x(inf~yc]ddc (A2)

Change the order of the double integrations.

2yF Ci - fg(x y;T){J w( t-xy-y) *exp(-i2n(ft+kyy ) I-dtdyc}I.dxdy. (M3)

MlLtiply the outer integrand by I -
e xp[-i2(k~x+kyy) I exp[-i2n(-kxx-ky y)].

2FIc] g(x,y;T) .exp[-i2n(kxx+kyy)].

fW(Ct-x,yc-y) 'exp[-i2n( ft+kyyc) I dtdyc}

Oxp(-i2l(-kxx-kyy) ] dxdy. (A4)

Cmine the final exponential with the inner integrand.

2F(c] - g(x,y;T)-expf-i2n(kxx+kyy)].

{Jfw(t-x~yc-y)-expf-i2n( (ft-kxx).Jcy(yc-y)) -dtdyc )dxdy. (A5)

Substitute f-Ckx, Ct-xc, and dt-dxc/C into the inner double integral.

2F(cl g(x,y;T) .exp(-i2n(kxx+kyy)]. (M6)

{ifW(x..x~yc-y) exp(-i2n~kx(xc-x)+k y(yc-y)]) .dxcdyc}).dxdy.

Change the inner variables of integration to X-(xc-x), Y-(yc-y), and re-
group the terms of the outer double integral.
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2F~cl - {f g(x~y;T).exp(-i2n(kxx+kyy)].dxdy}.

{1w(X Y) .exp(-i2r(kxx4kyY)] dXdY} A7

-L (36a')
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APPENDIX B. 3-D Fourier Transform of a Product, Eq. (37)

To simplify notation let ju1 _, 13w. ff, and

p(x,y,t) m g(x,y,t).q(x)-w(y)-z(t). (51)

Then from Eq. (30)

-Fp Jfg(x,y,t)-q(x)w(y)z(t)jexpf12n(kxx+yy4ft)].dxdydt. (B2)

Replace g(x,y,t) by the inverse transform of its spectrum Eq. (31).

3Fp] - fG(k;,kf)•exp[ i2n(k4x+kqy+f"t) ] •ddkdf" I.

(q(x).w(y).z(t)}.exp-i2n(kxx+kyy+ft)].dxdydt (B3)

Change the order of the triple integrals and combine the exponentials.

-1~ p ( q w z - x ( -2 ( k -; ) + k -. +( - O t d x d y d t} .

G(kx,qk,f*)dkdkdf °  (B4)

Factor the inner triple integral into its separable parts.

3F~pJ ffq(x).expc-i2n(kx-kxJ~xldx.
fy)-exp(-12tkqy -'dy]

fz(t).exp[-i2n(f-f°)t].dt).G(k;,kfO)-dk~dkdfO (B5)

The inner integrals are the fourier spectra of q(x), w(y), and z(t).

3F(pJ - f ~x~~o-Qk-x)W~yq-~-OIdxd~f (B6)

PThis 3-D convolution can be written symbolically in two ways:

3F(pI - G~;kD000k-xc-~yk)Zff) (B7)

- G(k;,k ,f )Q(kx-k;)-W(ky-k ) .Z(f-fo) (37)
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APP IX C. Equivalence of Projection-Slice and Present Analyses
when the Former Applies

Using a projection-slice approach, reference 9 derives relations

for the output and its spectr m from a scanning sensor. Here more gen-

eral relations are derived differently. If both approaches are correct,

they should give the saw result when both are applicable. This appen-

dix demonstrates the equivalence. The simpler projection-slice approach

is preferable for treating output from a single detector or from a tw-

dimensional spatial filter.8 The present analysis is better for dealing

with imges.

For comparison of the two approaches, results of this analysis mist

be rewritten using the notation and conventions of reference 9. The

space, tim, and frequency coordinates are the sm in the two works, as

are the fourier-transforu definitions except for the minor notational

difference F2 - 2F. Use of normlixed scale factors in reference 9 cor-

responds to projecting the img irradiance distribution ideally onto

the object plane, as in the present work. The "intensity iage distri-

bution functionn of reference 9 is the umr as the "image irradiance

distribution" of this work. Conversions for other quantities are:
(o-%,\, 0-%X ) (hs-px, Ks-P) ) (i-u>, , 1-U,\ ) (d-Y, D-r)

(i" Xz~s )(",\, b-C, wn2-1)

The two conversions in brackets apply when there is no analog processing

- i.e., [h( -t)-&(T-t), H(f)-1] - and voltage units are used for detec-

tor responsivity. Further differences between the notation of reference

9 and this work are as follows: Here P is the optical transfer func-

tion, in reference 9 it is the projection of I' on y-0. A prim denotes

any imag-plane quantity in this work, in reference 9 it indicates inge

irradiance convolved with the detector function d-y. Finally, reference

9 does not distinguish between different tasporal quantities such as

(t,T,T) or different spatial quantities such as (x,y), (xc,yc), (*,a).

The key results of reference 9 are now derived from the results of

the present work. From Eqs. (20a), (31), and (46a)

s . - 2 F[S\(fMky)J

f- 1 ~X(f/&,ky)-H(f)expti2n(fT+ky06)I'dfdky. I Cl)

-AID 
34
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Substitution of f-Ck x and H(f)-H(Ckx), some rearrangement, and defini-

tion of a now quantity give

sxf(r,O) - f H(k x ) .Prlkx,O).exp(i2nkx ).dkx ,  (C2)

wtre Pr(kx,O) is the projection of S\ on y-0:

Pr(kX,O) a f Sx\(kx,ky)-exp(12"ly)-dky. (C3)
_W

it follows fro the definitions of independent coordinates, functions,
and equality that

sf(';-O) -f H(Ocx).Pr(kx; -O).exp(i2nkxC).dkx . (C4)

(Since all coordinates are independent, any can be fixed at an arbitrary
value without regard to the others, and the value must be the same on
the two sides of the functional equality.) Wh en, as in reference 9,
there is no analog processing, H(CXx) - H(f) - 1 and

a

sxf(-,; - fPr(kx;0-0)-exp(i2RkxC-r).dkx. (C5)

With the appropriate conversions this becoms Eq. (9) of reference 9:

v(t) - R-fJP(kx)-exp(i2xkxbt)-dkx - Ri'l(bt,0) Ref. 9, Eq. (9)

Fourier transforming Eq. (CS) using Eq. (30) gives

S\f(f;-0) - lFs'\f(r;0O-O)

- *r(-exp(i2mkxCT).dkx exp(-i2nfr) "dT. (C6)

After substituting f- kx , w-Cr, and recalling that (a,kx) are conjugate
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variables, one obtains

Sflf;0-O) =- Pr(kx;0m0)'exp(i2nkxx)'dkxI exp(-i2nkxc0-dce

- l.F( -1FPr(kx;0-O)]1 - 1-Prkx;0). (C7)

On conversion of notation the last equality becomes

R P(k) R p(/2nb) (C8)

This agrees with Eq. (10) of reference 9 when typographical errors in
that equation are corrected by derivation as follows.

H(w)- Jv(t)-exp(-iwt).dt - -fi' (x,0)"exp(-i2nkxx)"dx
f-b-f

- (kx)-exp(i2nkxx)-dx exp(-i2kxx)-dx - Fl(Fil[P(kx)])

MRpkx) R-P-4/2,b) Ref. 9, Eq. (10)
-36
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